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Abstract A theoretical study has been made on the non-stationary relaxation of highly
vibrationally excited molecules in the presence of a source, producing these mole-
cules. Initially, the nonequilibrium vibrational distribution is created using multipho-
ton absorption of laser radiation. An exact, analytical solution to the master equation
is derived in terms of Meixner polynomials with regard to VV- and VT-processes. The
time-dependent distribution of the system “molecule + field” is used to give explicit
expressions for the mean number of photons distributed among vibrational and trans-
lational degrees of freedom and for the time dependence of average energy transferred
per collision.

Keywords Vibrational relaxation · Energy transfer · Transition probability ·
Multiphoton absorption · Meixner polynomials

1 Introduction

Traditionally, the multiphoton excitation of molecules is considered in collisionless
regime [1–5] and the influence of collisions is discussed as an interesting but unwanted
side effect [6]. In the present work, we are dealing with this problem quite differently.
The relaxation of highly vibrationally excited molecules, produced by external source,
is examined in detail. The excited molecules arise from the source due to the multipho-
ton absorption of laser radiation. The vibrational relaxation of polyatomic molecules
is treated over the entire time-scale, including the non-stationary stage which directly
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follows the switching of the source. This stage may be of interest for studying the pulse
methods of excitation when either pulse duration is comparable with vibrational relax-
ation time or the source operates continuously. The vibrationally excited molecules
originate from a pump laser. Note that upon laser excitation the initial distribution is
strongly non-equilibrium.

As previously [1–6], the energy molecule spectrum is conditionally partitioned
into three groups: the system of lower vibrational levels, the quasicontinuum of highly
excited states, and the true continuum of the states lying above the dissociation limit.
It has been universally accepted that the multiphoton absorption proceeds coherently
in the first few levels and incoherently in the latter levels [1,2]. Only the incoherent
absorption can be described by the set of first-order linear differential equations for the
course-grained levels of a polyatomic molecule. The excitation energy of a molecule
is randomized over all vibrational modes before its decomposition, and a statistical
approach is suited well for the description of collisional dynamics in the laser field. It
is assumed that the absorption is incoherent up from the first step, and the losses by
dissociation can be neglected. Therefore, the problem of lower levels is solved here
by introducing the probability of populating the vibrationally excited states. In the
framework of this approach, we are going to offer an analytical model with an exact
solution.

2 The master equation and its solutions

Consider now the admixture of the vibrationally excited molecules of kind a in a
heat bath of atoms b. For our purpose, of most interest are the polyatomic molecules,
arising in the highly vibrationally excited states under the action of the laser field. The
vibrational states are partitioned into degenerate levels of the equal energy spacing,
nhν, where ν is the laser frequency [1–6]. In other words, only these levels will be
populated due to energy conservation in the system “molecule + field”. The dipole
moment is non-zero only for transitions between neighboring levels. It is assumed
then that the degeneracy factor is the number of ways to distribute n quanta between
s identical oscillators without restrictions

gs(n) =
(

n + s − 1
n

)
(1)

The thermal distribution of the s-fold degenerate harmonic oscillator is of the form

ρn(θ) = (
1 − e−θ

)s
gs(n)e−nθ , (2)

where θ = hν/kB T . At thermal equilibrium, the mean number of photons per mole-
cule is

〈n〉T = s

eθ − 1
(3)

Obviously, the mean thermal energy of the molecule is hν〈n〉T .
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If Nn(t) is the time-dependent population, i.e., the fraction of excited molecules in
level n at time t , the populations satisfy the master equation [7,8]

Ṅn(t) =
∞∑

n′=0

[(
νaa Paa

n′→n +νab Pab
n′→n

)
Nn′(t)−

(
νaa Paa

n→n′ +νab Pab
n→n′

)
Nn(t)

]

+νaa

∞∑
m,m′,n′=0

[
Pm′→m

n′→n Nm′(t)Nn′(t)−Pm→m′
n→n′ Nm(t)Nn(t)

]
+ Q̇n(t) (4)

The dot denotes differentiation with respect to time. Here νab is the collision fre-
quency of the molecule of interest with species a and b, respectively. Expression
in the first brackets describes the processes of vibrational-translational (VT) energy
transfer with the probabilities Pab

n′→n . Expression in the second brackets refers to
the vibrational-vibrational (VV) quantum exchange between molecules. The rate of
excited molecule production is set by the term Q̇n(t), where Qn(t) is the probability
of populating the nth level at time t . In another way, this is the absorption probability
of n photons during this time.

Solution to Eq. (4) for the arbitrary initial conditions may be written in terms of the
Green function G(n′, t ′; n, t). Physically, it is the density of conditional probability
to find the random energy E(t) equal to En at time t provided it was En′ at previous
time t ′. When the laser is turned on at t = 0, the molecules start to move up the
energy ladder without appreciable dissociation. Then, a general solution to the master
equation obeys the equation

Nn(t) =
∞∑

n′=0

⎡
⎣Nn′(0)G

(
n′, 0; n, t

) +
t∫

0

Q̇n′(t ′)G
(
n′, t ′; n, t

)
dt ′

⎤
⎦, (5)

where G
(
n′, t ′; n, t ′

) = δn′n . As is seen, to determine the required population, the
Green function should be calculated using a satisfactory model of all probabilities.
Further, a general solution to Eq. (4) will be found as the expansion in terms of
orthogonal polynomials. The Meixner polynomials of a discrete variable will be a
suitable tool for studying the vibrational relaxation of s-fold degenerate harmonic
oscillators. The Appendix presents useful formulas, including these polynomials.

Here we will seek for the Green function, neglecting the laser field effect on col-
lisional probabilities. The probabilities are adiabatically small due to the large value
of vibrational quantum. The first-order perturbation theory provides probabilities of
only the one-quantum transitions that are well known in the harmonic approximation
[7–10]. The probabilities of downward transitions are left unchanged

Pn→n−1 = n P10 and Pn+1→n = (n + 1)P10 (6)

The probabilities of upward transitions are determined from the principle of detailed
balance
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Pn−1→n = gs(n)

gs(n − 1)
e−θ Pn→n−1 = (n + s − 1)e−θ P10 (7)

and

Pn→n+1 = gs(n + 1)

gs(n)
e−θ Pn+1→n = (n + s)e−θ P10 (8)

The well-known probabilities of the VV-processes may be also generalized in terms
of the perturbation theory

Pm→m+1
n→n−1 = n(m + s)

s
P10

01 = n(m + s)

(m + 1)(n + s − 1)
Pm+1→m

n−1→n (9)

and

Pm−1→m
n+1→n = (n + 1)(m + s − 1)

s
P10

01 = (n + 1)(m + s − 1)

(n + s)m
Pm→m−1

n→n+1 (10)

It will now be assumed that the fraction of excited molecules in the heat bath is small
(but not infinitely small) and the amount of energy absorbed by them is sufficiently
small so that the heat bath will remain to within a good approximation at its initial
temperature T . By introducing Eqs. (6)–(10) into the master equation, we obtain

Ġn(t) = − [
nω + (2n + s)�(n′, t)

]
Gn(t) + (n + 1)

[
ω + �(n′, t)

]
Gn+1(t)

+(n + s − 1)�(n′, t)Gn−1(t) (11)

For brevity, the G
(
n′, 0; n, t

)
is designated by Gn(t). Let us specify the other notations

in Eq. (11). In particular, the transition probabilities per unit time up and down at one
quantum are given in terms of the characteristic “frequency”

�(n′, t) = 1

s

[
� 〈n〉T + (ω − �)

〈〈n(n′, t)〉〉] (12)

It depends on the initial quantum number n′ at t = 0. The decay rate of excited states
is specified by the mean time 1/� , where

� = νaa

Zaa
V

+ νab

Zab
V

(13)

In Eq. (13), the mean number of collisions is given by the relation

1

Zab
V

= Pab
10

(
1 − e−θ

)
(14)

Accounting for the resonance VV-processes along with the VT- processes results in
one more characteristic time 1/ω, where
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ω = � + νaa P10
01 (15)

The time-dependent average vibrational energy (without laser field) is defined via the
first moment

〈〈n(n′, t)〉〉 =
∞∑

n=1

nG
(
n′, 0; n, t

)
(16)

It is worth noting that this average depends on the initial quantum number and appears
due to collisions. It is designated by double brackets to distinguish it from the mean
number of photons 〈n(t)〉 absorbed per molecule, which is non-zero under collisionless
excitation conditions.

The first moment may be determined from Eq. (11) by working out an equation for〈〈
ṅ(n′, t)

〉〉
. To this end, Eq. (11) is multiplied by n and summed over all n. This simple

problem is solved as follows

〈〈n(n′, t)〉〉 = 〈n〉T + (
n′ − 〈n〉T

)
e−� t (17)

By definition, the first moment is initially n′ and tends to the equilibrium value at
large times. As can be seen, it is exponential in time and independent of VV exchange
processes.

The set of differential difference Eq. (11) may be solved by generating function
method. Let us consider a generating function

F(z, t) =
∞∑

n=0

znGn(t) (18)

Using its partial derivatives with respect to t and z, we get the partial differential
equation

∂ F

∂t
−

[
ω(1 − z) + �(n′, t)(1 − z)2

] ∂ F

∂z
= −s�(n′, t)(1 − z)F (19)

The method of characteristics is used to write Eq. (19) as a system of ordinary differ-
ential equations

− dt = dz

ω(1 − z) + �(n′, t)(1 − z)2 = d F

s�(n′, t)(1 − z)F
(20)

Solution to the first equation (one of these two) is found quite easily in the form

C1 =
[

1

1 − z
+ a(n′, t)

]
eωt , (21)
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where C1 is the constant of integration, and the a(n′, t) function is given by

a(n′, t) =
t∫

0

e−ω(t−t ′)�(n′, t ′)dt ′ (22)

An explicit expression for a(n′, t) may be derived by substituting Eq. (12) into (22)
and using Eq. (17)

a(n′, t) = 1

s

[〈〈n(n′, t)〉〉 − n′e−ωt ] (23)

This function is zero at t = 0, whereas at t >> 1/ω, when the VV-processes are over,
it tends to the mean number of photons per mode.

As is readily verified by substitution, a solution to the second equation is

F(z, t) = C2

[1 + a(n′, t)(1 − z)]s , (24)

where C2 is the second constant of integration which represents an arbitrary ϕ(C1)

function. By definition, at t = 0 the generating function is equal to zn′
. According to

Eqs. (21) and (24) this function should be chosen as follows

C2 = φ(C1) =
(

1 − 1

C1

)n′

(25)

It is appropriate to introduce here the functions e−α and eβ , defined by the equations:

e−α = a(n′, t)

1 + a(n′, t)
, (26)

e−α+β = a(n′, t) − e−ωt

1 + a(n′, t) − e−ωt
(27)

To avoid cumbersome formulas, we omit the t argument in the α(t) and β(t) functions.
The final result is obtained by simple algebraic manipulations

F(z, t) =
(

1 − e−α

1 − ze−α

)s (
1 − e−α

1 − e−α+β

)n′ (
1 − ze−α+β

1 − ze−α

)n′

(28)

The required solution to Gn(t) is of the form

G(n′, 0; n, t) = ρn(α)

(
1 − e−α

1 − e−α+β

)n′
en′β/2√
gs(n′)

Mn′(n, β) (29)

Here Mn′(n, β) are the Meixner polynomials of a discrete variable n (see the Appen-
dix). Formula (57) makes it possible to confirm that substituting Eq. (29) into (18)
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gives exactly Eq. (28). Obviously, the Green function is normalized to unity for any ini-
tial conditions. Numerical calculations are convenient to perform using the expression
into which the Meixner polynomials should be substituted according to Eq. (51):

G(n′, 0; n, t) = gs(n)[a(n′, t)]n
(
1 + a(n′, t) − e−ωt

)n′

[1 + a(n′, t)]n+n′+s
(30)

×
n<∑

k=0

1

gs(k)

(
n
k

) (
n′
k

) {
e−ωt

a(n′, t)
[
1 + a(n′, t) − e−ωt

]
}k

where n< = min(n′, n). We see that an exact solution to Eq. (11) is given in terms of the
finite sum of elementary functions. By simple reasoning it is possible to demonstrate
that G(n′, 0; n, 0) = δnn′ . Since a(n′, t) ∝ t at t → 0, then the hypergeometric series
diverges as t−2n< . Thus, the t |n−n′| solution differs from zero at t = 0 for n = n′only.
Finally, the Green function, depending on time t ′, is of the form

G(n′, t ′; n, t) = G(n′, 0; n, t − t ′) (31)

The probability of transition from the (n′, t ′) state to the (n, t) state depends on the
time interval (a stationary Markov process) rather than on the two times.

Below we make some general comments. Let at t = 0 all the molecules be in
the ground state. Equation (29) then takes on the ρn(α) form for t > 0. The system
relaxes to the final Boltzmann distribution at temperature T via a continuous sequence
of Boltzmann distributions with a vibrational temperature TV = hν/kBα. It is obvious
that α(∞) = θ . Let us consider for example the case n′ = 1. From Eq. (29) we get

G(1, 0; n, t) = ρn(α)

(
1 − e−α

1 − e−α+β

) [
1 + n

s

(
1 − eβ

)]
(32)

It is seen that the population is far from the Boltzmann distribution at β �= 0. Therefore,
it cannot be characterized by the time-dependent vibrational temperature which holds
for other n′ �= 0 because of the complementary β(t) function. It is of particular interest
that the β(t) function turns into zero at t → ∞ faster than the α(t) − θ function, i.e.,
β(t) ≈ 0, but α(t) �= θ . This distinction is due to the fact that the rates of the
resonance VV- processes substantially exceed those of the adiabatic VT-processes.
Thus, the difference between the exponents e−ωt and e−� t may be of many orders of
magnitude. Consider the case, where the VV-processes are already over, i.e., e−ωt ≈ 0,
but e−� t �= 0. With t >> 1/ω the solution reduces to

G(n′, 0; n, t) ≈ ρn(α), (33)

where

e−α ≈
〈〈n(n′, t)〉〉

s + 〈〈n(n′, t)〉〉 (34)
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In another way, the solution is determined by the time-dependent mean number of
photons per mode. The system is restored to its equilibrium state at large times, which
is demonstrated by Eqs. (33) and (34).

3 The time-dependent average energy and energy transfer

Now we calculate the average energy transferred per collision

〈�E(n)〉 =
∞∑

n′=0

(En′ − En)
(
(1 − x)Paa

n→n′ + x Pab
n→n′

)
, (35)

where x = νab/(νaa + νab) is the fraction of buffer atoms. The energy transfer is
readily calculated for one-quantum transitions

〈�E(n)〉 = − En − 〈E〉T

ZV
, (36)

where 〈E〉T is the mean thermal energy, and ZV is the mean number of collisions
necessary to reach equilibrium

1

ZV
= x

Zab
V

+ 1 − x

Zaa
V

(37)

It is seen that the energy excess En − 〈E〉T is transferred to the heat bath in ZV steps
with the step size equal to 〈�E(n)〉. For the highly excited molecule, a collision ends,
on the average, in energy loss only; therefore, the average energy transfer is negative
for the high vibrational energies.

It is clear that the perturbation theory works well for weak collisions, i.e., ZV >> 1.
The large value of the vibrational quantum, hν, provides the exponentially small
probability P10 [10]. Therefore, ZV varies from 101 to 104 for polyatomic molecules
[11]. Note that ZV increases with increasing temperature.

We have got the Nn(t) distribution to calculate the ensemble averages for the system
“molecule+ field”. Let us evaluate the mean number of photons, stored by molecules
at the vibrational degrees of freedom in a time t

〈〈nV (t)〉〉 = 〈〈E(t)〉〉
hν

=
∞∑

n=1

nNn(t) (38)

Here 〈〈E(t)〉〉 is the average vibrational energy. Substituting Nn(t) from Eq. (5) into
(38), in conjunction with Eqs. (16) and (31), we get

〈〈nV (t)〉〉 =
∞∑

n′=0

⎡
⎣Nn′(0)

〈〈
n(n′, t)

〉〉 +
t∫

0

Q̇n′(t ′)
〈〈

n(n′, t − t ′)
〉〉

dt ′
⎤
⎦ (39)
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Remember that the initial distribution was equilibrium, ρn′(θ), before the laser is
turned on at time t = 0. Integration with respect to dt ′ is performed in a trivial way.
Summing over n′ yields

〈〈nV (t)〉〉 = 〈n〉T + 〈n(t)〉 − 〈〈nV T (t)〉〉 , (40)

where 〈〈nV T (t)〉〉 is the number of photons transferred to the translational degrees of
freedom

〈〈nV T (t)〉〉 =
t∫

0

〈
n(t ′)

〉
e−�(t−t ′)�dt ′, (41)

and 〈n(t)〉 is the mean number of photons absorbed per molecule in a time t . In other
words, it is the first moment of the absorption probability of n photons during this
time

〈n(t)〉 =
∞∑

n=1

nQn(t) (42)

Thus, we see that the number of photons absorbed per molecule is distributed between
the vibrational and translational degrees of freedom. Remember that hν〈n〉T is the
mean thermal energy, i.e., the energy per molecule at t = 0.

Consider now the behavior of these quantities at large times (see below Fig. 4). The
laser pulse has got a finite duration and the total number of absorbed photons 〈n(∞)〉
remains finite. At large times, with all relaxation processes over, only the thermal
equilibrium amount of photons is available on the vibrational degrees of freedom, i.e.,
〈〈nV (t)〉〉 has the 〈n〉T limit. As a result, the number of photons 〈〈nV T (t)〉〉 tends to
〈n(∞)〉. In another way, the laser pulse energy is fully transferred to the heat bath
during a long period of time. Thus, the number of photons 〈〈nV (t)〉〉 starts with 〈n〉T ,
reaches a maximum, and tends to 〈n〉T at long times. Actually, the number of photons
at thermal equilibrium will be different at t = 0 and t = ∞. However, we neglect an
increase in heat bath temperature.

In this analysis, we have omitted the dissociation of molecules when a molecule
reaches a certain level in the continuum of states, lying above the dissociation limit,
and decomposes into fragments. This assumption holds if one can distinguish two
independent stages of the relaxation process. The first fast stage with a character-
istic time of 1/� corresponds to the vibrational relaxation, which ends before the
decomposition of a noticeable fraction of molecules. The second slow stage includes
the decomposition of molecules and is characterized by the time t̄ , necessary for a
molecule to reach dissociative states [12]. With � t̄ >> 1, the second stage occurs
following the relaxation of average energy to equilibrium.

The average energy transfer per molecule at time t is of the form

〈〈�E(t)〉〉 =
∞∑

n=0

〈�E(n)〉Nn(t) (43)
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Substituting Eq. (36) into (43) and using Eq. (40), we derive the relation

〈〈�E(t)〉〉
hν

= −〈n(t)〉 − 〈〈nV T (t)〉〉
ZV

(44)

Because of the competitive contribution of the laser field and VT collisions, the average
energy transfer, as a function of time, has a maximum. Initially, the 〈〈�E(t)〉〉 is zero
and decreases to zero at long times which means that at equilibrium there is no net
energy transfer in the bulk system.

The macroscopic law of the temporal evolution of the average vibrational energy
follows from Eqs. (40) and (44)

d

dt
〈〈E(t)〉〉 = νc 〈〈�E(t)〉〉 + hν 〈ṅ(t)〉 (45)

It is worth noting that � ZV is equal to the total collision frequency νc = νaa +νab. In
this case, the term hν 〈ṅ(t)〉 is proportional to I (t), where I (t) is the laser intensity (the
temporal profile of the pump laser pulse) [1–4]. Equation (45) is the well-known result
from the theory of stochastic processes without external sources of excited molecules
[13]. For 〈ṅ(t)〉 = 0, this equation is of general character and independent of any
particular form of the transition probability [14,15].

The second essential feature of Eqs. (40) and (44) suggests broad potentials for
practical implementation. Let us draw up the following ratio

〈〈E(∞)〉〉 − 〈〈E(t)〉〉
〈〈�E(t)〉〉 = ZV (46)

which is time-independent. Equation (46) defines the mean number of collisions that
should be obtained from experiments. This behavior results directly from a special
case where the microscopic quantity 〈�E(n)〉 is a linear function of the initial energy
En (see Eq. (36)). Every time when 〈�E(n)〉 is proportional to En , the mean number
of collisions may be determined from Eq. (46), in both the vibrational [16,17] and
the rotational relaxation [18]. Such was indeed the case to find the mean numbers of
collisions in experiments [19–24], where the molecules were prepared in the excited
states by the method of multiphoton absorption.

4 Results and discussion

For definiteness, we are going to consider events that follow the multiphoton excitation,
where a heat bath is initially cold (and remains cold), while the active molecules arise
in the vibrationally excited states due to the pump laser pulse. To show actual numerical
results for a concrete collisional system, we shall use parameters applicable to SF6
in argon at 300 K [21,25,26]. The mean numbers of collisions are Zab

V = 1910 [21],
Zaa

V = 108 [25], and P10
01 ≈ 1 [26].

Figures 1 and 2 show the distributions, calculated from Eq. (30), depending on the
vibrational quantum number n for the different values of the reduced time νct . As
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Fig. 1 The calculated fractional populations over energy levels for various numbers of collisions νct in
the system SF6 + Ar at n′ = 12 for 1 Torr SF6 with 100 Torr Ar
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Fig. 2 The same as in Fig. 1. Pure SF6 at 200 Torr

νct increases, the observed peak shifts along n axis from the initial (n′ = n = 12)

to the final position, occupied by thermal distribution. Let us first analyze the case,
where the excited molecules compose a small admixture in buffer gas. The initially
narrow distribution strongly broadens step-by-step with a further increase in νct , but
at long times it tends to a very narrow thermal distribution. This fact is interpreted as
the predominant contribution of the VT-processes, where many collisions are needed
(ZV = 1640) to reach equilibrium (Fig. 1). In pure SF6, prevailing are the fast VV-
processes with a characteristic time of 1 ns. The distribution becomes broad already
after one collision, when all the levels are populated up to n = 25. Thereafter the
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Fig. 3 Time-dependent populations for n = 8−16 after excitation with n = 12. The mixture consists of
0.1 Torr SF6 with 100 Torr Ar. The lines show results for Eq. (30)

distribution only narrows with an increase in νt , and moves to the thermal distribution
(Fig. 2).

The time-dependent populations are shown in Fig. 3. Initially, the level with n = 12
is excited. The population is observed to transfer at collisions from the initial to other
levels. The energy transfer rates satisfy the constraint of detailed balance. Therefore,
the downward transitions are preferred over the upward ones.

The absorption probability of n photons may be estimated quite readily when the
absorption cross sections substantially exceed the emission ones; therefore, the induced
emission is neglected [4]

Qn(t) = 〈n(t)〉n

n! e−〈n(t)〉, (47)

where

〈n(t)〉 = σ

hν

t∫
0

I (t ′)dt ′ = 〈n(∞)〉
t∫

0

I (t ′)dt ′
⎡
⎣

∞∫
0

I (t)dt

⎤
⎦

−1

(48)

Here σ is the effective absorption cross section [20,24]. The mean excitation level is
equal to 〈n(t)〉 for the Poisson distribution. In other words, 〈n(t)〉 is the mean number
of photons absorbed per molecule in a time t . Note that 〈n(∞)〉 is the total number of
absorbed photons.

A theoretical study on the time dependence of the IR multiphoton absorption in
SF6 + Ar mixtures was performed using the microsecond pulses of the CO2 laser as a
source of excited molecules [19]. In the presence of argon gas, the number of photons
absorbed per SF6 molecule, 〈n(t)〉, are distributed between the vibrational 〈〈nV (t)〉〉
and the translational 〈〈nV T (t)〉〉 degrees of freedom. The decay of these quantities is
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Fig. 4 The calculated vibrational energy content 〈〈nV (t)〉〉, the number of photons transferred to the thermal
bath 〈〈nV T (t)〉〉, and the number of photons 〈n(t)〉 absorbed per SF6 molecule against decay time. The
mixture consists of 1 Torr SF6 with 100 Torr Ar. The total number of absorbed photons is 〈n(∞)〉 = 20
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Fig. 5 The average energy transferred per collision as a function of time for 0.0002 Torr SF6 with 1 Torr
Ar. The total number of absorbed photons is〈n(∞)〉 = 19. The inset shows the temporal profile of the CO2
laser pulse

plotted vs. time in Fig. 4. The values were calculated from Eqs. (40), (41), and (48).
The temporal profile of the CO2 laser pulse is shown in Fig. 5.

Due to collisions, the excited molecules lose the average amount of energy
〈〈�E(t)〉〉 at time t . Figure 5 presents the calculated values of the average energy
transfer as a function of time. For clarity, given are the values for the time interval
0 − 5μs, though 〈〈�E(t)〉〉 tends to zero at long times. The maximal energy transfer
is −9.0cm−1 which is in fair agreement with an experimental value of −7.8 cm−1

[21]. As follows from Eqs. (13), (41), and (44), the average energy transfer depends
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nonlinearly on the partial pressure of absorbing molecules. For example, an increase
in the partial pressure of SF6 molecules from 0.0002 Torr to 0.035 Torr in a mixture
with 1 Torr of argon results in an increase in the transferred energy up to −14 cm−1

which is confirmed experimentally [19].
The multiphoton energy absorption from the laser field raises molecules to the

highly vibrationally excited states during the short periods of time. The mean excitation
level is given by the 〈n(t)〉 value. The average vibrational energy and the average
transferred energy are observed to depend on the mean excitation level. For a given
mixture, a maximum of the energy transfer depends mainly on the total number of
photons absorbed per pulse, 〈n(∞)〉.

The average vibrational energy is determined as the sum of hνnNn(t) energies over
all quantum numbers. This value is given in terms of the first moment, 〈〈n(n′, t)〉〉,
which depends only on the relaxation time 1/� of the VT energy transfer. Thus, the
collisional energy transfer depends on both the joint contribution of VT-processes and
the level of excitation by laser pulses.

No energy is transferred at resonance VV-collisions. In this case, populations are
redistributed over vibrational levels. These collisions are characterized by a time-scale
of 1/ω and produce an additional mechanism via which the molecules reach the highly
vibrationally excited states.

In summary, we have shown that our phenomenological model calculations give
a realistic description of the temporal evolution of populations upon collisions in
the presence of multiphoton absorption for polyatomic molecules. Here we do not
discuss the interesting results for SF6 dissociation because it is beyond the scope of
the present paper. Nevertheless, the basic ideas of the model seem to be fruitful for
further development in this direction.

5 Appendix. The Meixner polynomials

The Meixner polynomials [27] are defined by weight function (2), where n =
0, 1, 2, . . .

These polynomials satisfy the orthogonality condition

∞∑
n=0

ρn(θ)Mk(n, θ)Mk′(n, θ) = δkk′ (49)

The completeness property for these polynomials is given by the expression

ρn(θ)

∞∑
k=0

Mk(n, θ)Mk(n
′, θ) = δnn′ (50)

The orthonormalized Meixner polynomials are of the form

Mk(n, θ) = √
gs(k) exp

(
−kθ

2

) m<∑
m=0

1

gs(m)

(
k
m

)(
n
m

) (
1 − eθ

)m
, (51)
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where m< = min(k, n). Then the definition leads to the symmetry property

1√
gs(k)

exp

(
kθ

2

)
Mk(n, θ) = 1√

gs(n)
exp

(
nθ

2

)
Mn(k, θ) (52)

Relation between the Meixner polynomials and the hypergeometric function fol-
lows from the equation

F (−k,−n; s; z) =
m<∑

m=0

(
k
m

)(
n
m

)
zm

gs(m)
(53)

The hypergeometric function of the form (53) may be expressed in terms of the
Jacobi polynomials [28] to determine the relation between the Meixner and Jacobi
polynomials

Mk(n, θ) = 1√
gs(k)

exp

(
kθ

2

)
P(s−1,n−k)

k

(
2e−θ − 1

)
(54)

There is an abundant literature where the useful formulas are given for the Jacobi
polynomials [27–29]. In particular, the generating function of Jacobi polynomials is
of the form [29]

∞∑
k=0

tk P(s−1,n−k)
k

(
2e−θ − 1

) = (1 − t)n(
1 − te−θ

)n+s , t < 1 (55)

This equation may be used to derive a generating function for the Meixner polyno-
mials which is convenient to rewrite as

∞∑
k=0

e−kα
√

gs(k)Mk(n, β) = 1(
1 − e−α−β/2

)s

(
1 − e−α+β/2

1 − e−α−β/2

)n

(56)

The symmetry property (54) allows one to write this relation in a different form

∞∑
n=0

e−nαgs(n)Mk(n, β) =
√

gs(k)e−kβ/2(
1 − e−α

)s

(
1 − e−α+β

1 − e−α

)k

(57)
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